2	- Add numbers, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers - Show that addition of two numbers can be done in any order (commutative).	- Subtract numbers, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - Show that subtraction of two numbers cannot be done in any order.	* Calculate multiplication statements within the 2,5 and 10 multiplication tables and write them using the multiplication (x) and equals (=) signs. - Show that multiplication of two numbers can be done in any order (commutative).	- Calculate division statements within the 2 , 5 and 10 multiplication tables and write them using the division (\div) and equals $(=)$ signs. - Show that division of numbers cannot be done in any order.
	Addition of two two-digit numbers (no exchange): $34+23=57$ (Numicon and dienes) Addition of two two-digit numbers (exchange) $47+24=71$ (Place value counters)	Subtraction two two-digit numbers (no exchange) $47-23=24$ (Numicon and dienes) (Place value counters) Subtraction of two two-digit numbers (exchange) $52-27=25$ (Place value counters)	Multiplication of two numbers within the 2, 3, 5, 10 multiplication tables. Introduce x sign to mean "how many times" and model recording calculations $5 \times 3=15 \text { or } 5,3 \text { times }=15$ (Numicon) (Arrays, ten frames and counters) (Counters - one to many correspondence)	Division of numbers within known multiplication tables Consolidate understanding of 'sharing' and 'grouping' as outlined within Year 1. Grouping How many 2 s are in 10 ? What is 10 grouped into twos? (Cubes, Numicon and counters) (Counters - one to many correspondence)

